首页> 外文OA文献 >Multiple imputation and maximum likelihood principal component analysis of incomplete multivariate data from a study of the ageing of port
【2h】

Multiple imputation and maximum likelihood principal component analysis of incomplete multivariate data from a study of the ageing of port

机译:来自港口老化研究的不完全多元数据的多重插补和最大似然主成分分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A multivariate data matrix containing a number of missing values was obtained from a study on the changes in colour and phenolic composition during the ageing of port. Two approaches were taken in the analysis of the data. The first involved the use of multiple imputation (MI) followed by principal components analysis (PCA). The second examined the use of maximum likelihood principal component analysis (MLPCA). The use of multiple imputation allows for missing value uncertainty to be incorporated into the analysis of the data. Initial estimates of missing values were firstly calculated using the Expectation Maximization algorithm (EM), followed by Data Augmentation (DA) in order to generate five imputed data matrices. Each complete data matrix was subsequently analysed by PCA, then averaging their principal component (PC) scores and loadings to give an estimation of errors. The first three PCs accounted for 93.3% of the explained variance. Changes to colour and monomeric anthocyanin composition were explained on PC1 (79.63% explained variance), phenolic composition and hue mainly on PC2 (8.61% explained variance) and phenolic composition and the formation of polymeric pigment on PC3 (5.04% explained variance). In MLPCA estimates of measurement uncertainty is incorporated in the decomposition step, with missing values being assigned large measurement uncertainties. PC scores on the first two PCs after multiple imputation and PCA (MI+PCA) were comparable to maximum likelihood scores on the first two PCs extracted by MLPCA.
机译:通过对港口老化期间颜色和酚类成分变化的研究,获得了包含许多缺失值的多元数据矩阵。在数据分析中采取了两种方法。首先涉及使用多重插补(MI),然后进行主成分分析(PCA)。第二部分研究了最大似然主成分分析(MLPCA)的使用。使用多重插补可以将缺失值的不确定性纳入数据分析中。首先使用期望最大化算法(EM)计算缺失值的初始估计,然后使用数据增强(DA)来计算五个估算的数据矩阵。随后由PCA分析每个完整的数据矩阵,然后对它们的主成分(PC)分数和负载取平均,以估算出误差。前三台PC占解释差异的93.3%。在PC1上解释了颜色和单体花色苷组成的变化(79.63%解释了方差),在PC2上酚类成分和色调的变化(解释了方差8.61%)和酚类成分以及PC3上聚合物颜料的形成(5.04%解释了方差)。在MLPCA中,将测量不确定度的估计值并入分解步骤,并为缺失值分配较大的测量不确定度。多重插补和PCA(MI + PCA)之后的前两台PC上的PC分数与MLPCA提取的前两台PC上的最大似然分数相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号